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The oldest unsolved problem in classical physics

Richard Feynman wrote in 1964 in his famous ”Lectures in Physics”
”there is a physical problem that is common to many fields, that
is very old, and that has not been solved. It is not the problem of
finding new fundamental particles, but something left over from a
long time ago—over a hundred years. Nobody in physics has really
been able to analyze it mathematically satisfactorily in spite of its
importance to the sister sciences. It is the analysis of circulating
or turbulent fluids.”

This problem, in my opinion, has now been solved, and today I will
present this solution, quite unusual for turbulence experts.

The String Theory/QFT community may find it easier to
understand, as it is a manifestation of duality, much like AdS/CFT.

For classical physics, this solution is interesting as a new phenomenon
of spontaneous quantization of a nonlinear dynamical system.
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Evolution of Gibbs Distribution

The Hamiltonian systems satisfy the Liouville equation for the
probability density in phase space

∂tρ = {H, ρ} , (1)

Based on this equation, Theoretical Physics conjectured the Gibbs
distribution

ρ = exp (−βH); (2)

as the only conserved multiplicative measure.

In dissipative systems, such as the NS, the probability measure is not
conserved but decays into a standstill with zero velocity.

So, the turbulence problem is to find decaying solution for the
probability evolution, to replace the Gibbs distribution.

This solution must be degenerate (fixed manifold rather than a fixed
point) to describe critical phenomena observed in turbulent flows.
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Loop Average and Dimension Reduction

The loop average is defined as the characteristic function for the
distribution of velocity circulation:

Ψ[γ,C] =
〈
exp

( ıγ
ν
ΓC

)〉
, ΓC =

∮
dC⃗(θ) · v⃗(C⃗(θ)).

The loop functional, just like a Wilson loop in Abelian gauge theory, is
invariant under adding a gradient of a scalar field to the velocity.

This is a particular case of the Hopf functional representation:

Ψ[γ,C] =

〈
exp

(∫
r⃗∈R3

J⃗C(r⃗) · v⃗(r⃗) d3r
)〉

.

An imaginary source J⃗(r⃗) is concentrated on a fixed loop in space R3

J⃗C(r⃗) =
ıγ

ν

∮
dC⃗(θ)δ3

(
r⃗ − C⃗(θ)

)
The evolution equation for the loop average replaces the
Liouville equation for the dissipative system.
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Loop Equation as Quantum Mechanics in Loop Space

The velocity dynamics is governed by the incompressible
Navier-Stokes equation (with vorticity ω⃗ = ∇⃗ × v⃗)

∂tv⃗ = v⃗ × ω⃗ − ν∇⃗ × ω⃗ − ∇⃗
(
p+

v⃗2

2

)
; ∇⃗ · v⃗ = 0; (3)

The loop functional satisfies a key relation derived from this
equation (with gradient terms integrating to zero on a closed loop):

ıν∂tΨ[γ,C] =

〈
γ

∮
dC⃗(θ) ·

(
ν∇⃗ × ω⃗ − v⃗ × ω⃗

)
e

ıγ
ν
ΓC

〉
.

This relation leads to the closed functional equation for the loop
average [6]:

ıν∂tΨ[γ,C] =

∮
dC⃗(θ) · L̂

[
δ

δC⃗(·)

]
Ψ[γ,C].
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Vorticity correlation functions

To define and explain the loop operator L̂, we need to revive a Loop
calculus developed in gauge theories in the 80-ties and 90-ties.

The area derivatives of the loop functional bring down vorticity
ω⃗ = ∇⃗ × v⃗, which is an analog of the field strength in QED.

ν
δΨ[C, t]

δσ⃗
= ıγ

〈
ω⃗ exp

ıγΓC [v]

ν

〉
NS

(4)

Applying these area derivatives at n points r⃗i = C⃗(θi) we bring down
from exponential n factors of vorticity ω⃗(r⃗i). After that, we
contract the loop to a set of spokes CS(r⃗1, . . . r⃗n), backtracking
from the origin to these points (see a figure on the next slide). The
circulation ΓC [v] vanishes for this loop.
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Bike wheel
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Vorticity correlation functions

The positions of the angles θ1 . . . θn do not affect the loop average
as long as these points are ordered on a loop (parametric invariance);
so we can integrate them out.

We arrive at the relation for the vorticity correlation in the loop
dynamics:

⟨ω⃗(r1)⊗ ω⃗(r2) · · · ⊗ ω⃗(rn)⟩v =
n!

(2π)n〈 ∫
· · ·
∫

0<θ1<···<θn<2π

dθ1ω̂(θ1)⊗ dθ2ω̂(θ2) · · · ⊗ dθnω̂(θn)e
ıΓC
ν

〉
C=Cs(... )

;(5)

ω̂(θ) = −ıν
δ

δσ⃗(θ)
(6)
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Loop Calculus

Geometrically, the area derivative is a vector multiplying the
infinitesimal area δC⃗(θ)× C⃗ ′ in a variation of the circulation. By
the Stokes theorem,

δΓC

δC⃗(θ)
= ω⃗(C⃗(θ))× C⃗ ′(θ) (7)

The functionals with finite area derivative are called Stokes
functionals.

The formal definition of the area derivative is given by the integral
picking the delta function term in the second functional
derivative, as observed by Sasha Polyakov back in the eighties

δ

δσ⃗(θ)
=

δ

δC⃗ ′(θ)
×
∫ θ+0

θ−0
dθ′

δ

δC⃗(θ′)
(8)
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The gradient operator and the Bianchi identity

The conservation law ∇⃗ · ω⃗ = 0 in coordinate space leads to the
Bianchi identity in the loop space

D̂(θ) · δΓC

δC⃗(θ)
= 0 (9)

The gradient operator

D̂(θ) =

∫ θ+0

θ−0
dθ′

δ

δC⃗(θ′)
(10)

geometrically means shifting an infinitesimal vicinity of the point
C⃗(θ) at the curve.

When applied to any local function of C⃗(θ) like ω⃗(C⃗(θ)), this
operator is equivalent to a gradient, but for the circulation it yields
zero in virtue of the Stokes theorem.

All these operations were justified mathematically by taking a
limit of a polygonal approximation of the loop.
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The loop equation

Now we can define the loop equation. The operator L̂ is obtained
from the differential operator in the NS equation for circulation by
replacement of ∇⃗, ω⃗ by above operators

L̂(θ) exp
ıγ

ν
ΓC [v] =(

−νD̂(θ)× ω̂(θ) + ω̂(θ)× v̂(θ)
)
exp

ıγ

ν
ΓC [v]; (11)

The operator v̂(θ) is related to previous operators by the Biot-Savart
formula

v⃗(r⃗) =
−1

∇⃗2
∇⃗ × ω⃗(r⃗); (12)

v̂(θ) =
−1

D̂(θ)2
∇̂(θ)× ω̂(θ); (13)

These formulas were justified by taking a limit of a polygonal
approximation of the loop, when these functional derivatives become
ordinary gradients.

Alexander Migdal (Institute for Advanced Study, Princeton, USA)Duality of Decaying Turbulence to a Solvable String Theory
IAS Physics Group Seminar, April 16, 2025
11 / 33



Key Insight: Plane Wave Solutions in Loop Space

The loop equation maps fluid dynamics to a Schrödinger equation
in loop space with a Hamiltonian:

ĤC =

∮
dC⃗(θ) · L⃗

[
δ

δC⃗(·)

]
.

A plane wave solution emerges naturally, as this Hamiltonian
depends only on the canonical momenta but not on the coordinates C

Ψ[γ,C] =

〈
exp

(
ıγ

ν

∮
dC⃗(θ) · P⃗ (t, θ)

)〉
P (t)

.

The averaging ⟨. . . ⟩P (t) goes over solutions of the following

momentum loop equation (MLE), with ∆P⃗ = P⃗ (θ+)− P⃗ (θ−)
being a discontinuity:

ν∂tP⃗ = −γ2(∆P⃗ )2P⃗ +∆P⃗

(
γ2P⃗ ·∆P⃗ + ıγ

(
(P⃗ ·∆P⃗ )2

∆P⃗ 2
− P⃗ 2

))
.
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The plane wave is an eigenvector of the loop operators

This dimensional reduction of the fluid dynamics was hidden in
plain sight for centuries!

The functional derivatives δ
δC⃗(θ)

bring down P⃗ ′(θ) from the

exponential; the right side of the equation reduces to a rational
function of the values P⃗ (θ ± 0):

W [C,P ] = exp

(
ıγ

ν

∮
dC⃗(θ) · P⃗ (t, θ)

)
; (14)

D̂(θ)W [C,P ] ∝
∫ θ+0

θ−0
dθ′P⃗ ′(t, θ′)W [C,P ]; (15)

ω̂(θ)W [C,P ] ∝ P⃗ (θ)×
∫ θ+0

θ−0
dθ′P⃗ ′(t, θ′)W [C,P ]; (16)∫ θ+0

θ−0
dθ′P⃗ ′(t, θ′) = P⃗ (θ + 0)− P⃗ (θ − 0) = ∆P⃗ (θ) (17)

The best part is still ahead: the MLE can be analytically solved!
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The Euler Ensemble Solves MLE

The decaying solution of MLE [8] is given by:

P⃗ (θ, t) =

√
ν

2(t+ t0)

F⃗ (θ)

γ
,

where F⃗ (θ) is a universal fractal curve, constructed as the
limit N → ∞ of a regular star polygon {q/p} with vertices:

F⃗
(

2πk
N

)
= Ω̂ · {cos(αk),sin(αk),ı cos(

β
2
)}

2 sin( β
2
)

, where: β = 2πp
q

,

αk = β
∑k

l=0 σl , k = 1, . . . N, N → ∞

The parameters Ω̂ ∈ SO(3), p
q
∈ Q, σk = ±1 are random,

making P⃗ (θ, t) a fixed stochastic trajectory of MLE.

This solution is equivalent to a random walk on these
regular star polygons.

Validation: This solution has been verified using
Mathematica® notebooks [3] and rigorously tested in
collaboration with mathematicians [2].

Significance: This framework establishes a quantitative link
between classical turbulence and number theory through a
novel mechanism of spontaneous quantization.

Illustration of a Fractal Curve
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Dual Amplitude and Loop Functional

The loop functional in the Euler ensemble corresponds to the dual
amplitude of string theory, defined on a discrete target space F⃗ (θ)

with distributed external momentum Q⃗(θ, t) = C⃗′(θ)√
2ν(t+t0)

:

Ψ[C, t] =

〈
exp ı

∮
dθF⃗ (θ) · Q⃗(θ, t)

〉
F,σ

Averaging over string target space F⃗k corresponds to summing over
star polygons with unit sides and rational angles β = 2π p

q .

Averaging over fermionic/Ising degrees of freedom produces a
random walk (Brownian motion in the continuum limit) across
polygon edges.

The viscosity enters this string theory as a coupling constant in the
denominator of the effective Action. The turbulent limit of ν → 0
becomes the weak coupling limit, solvable in the WKB
approximation.
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Explicit Formula for Velocity Correlation

The statistical limit of the Euler ensemble as N → ∞, ν → 0, ν̃ = νN2 =
const , enables computations of the energy spectrum and correlation func-
tions in quadrature.

Here is the resulting formula for the second moment of velocity differ-
ence: 〈

∆v⃗2
〉
(r, t) =

ν̃2

νt

∫ ϵ+ı∞

ϵ−ı∞

dp

2πı
V (p)

(
|r⃗|√
ν̃t

)p

;

V (p) = −
f(−1− p)ζ

(
13
2 − p

)
csc
(πp

2

)
16π2(p+ 1)(2p− 15)(2p− 5)ζ

(
15
2 − p

) . (18)

Here f(z) is an entire function computed via Mellin integrals of elementary
functions. V (p) is meromorphic. ν is physical viscosity, while turbulent
viscosity ν̃ is a free parameter of the solution.
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Spectrum of indices of velocity correlation

The spectrum of indices for velocity correlation is given by the poles of V (p)

indexes of velocity correlation

Index Condition

−1
0

2n n ∈ Z, n ≥ 1
5/2
11/2
15+4n

2 n ∈ Z, n ≥ 0
7± ıtn n ∈ Z

(19)

where 1
2 ± ıtn are the zeros of the Riemann ζ function.
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DNS Data and Theoretical Match
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Experimental Data: Inverse Energy Scaling
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The Nonabelian turbulence

The MLE can be generalized to the nonabelian gauge theory Â(r⃗)
in the Lie algebra of some semisimple group G (with r⃗ ∈ Ed).

∂tÂβ = ν
[
D̂α, F̂αβ

]
; (20)

F̂αβ =
[
D̂α, D̂β

]
; (21)

D̂α = ∇α + Âα; (22)

W [C, t] =

〈
tr P̂ exp

∮
ÂβdCβ

〉
A(t)

; (23)

W [C, 0] =

∫
[δA]tr P̂ exp

∮
ÂβdCβ exp−

β

2

∫
tr F̂ 2

αβ (24)

The same Anzatz with abelian momentum loop solves this equation

W [C, t] =

〈
exp

ı

ν

∮
dCα(θ)Pα(t, θ)

〉
P (t)

(25)
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The same Euler ensemble

The new MLE has only a diffusion term

ν∂tPβ = −(∆P )2Pβ +∆PβPα∆Pα (26)

The initial data distribution ρ[P ] corresponds to the path integral of
W [C, 0]

ρ[P ]t=0 ∝
∫
[δC]W [C, 0] exp− ı

ν

∮
dCα(θ)Pα(t, θ) (27)

and thus it depends on the Lie algebra; otherwise, the equation is
completely universal.
The shifted Euler ensemble serves as its asymptotic solution
corresponding to decaying turbulence

P⃗ (θ, t) =

√
ν

2(t+ t0)
F⃗ (θ); (28)

F⃗

(
2πk

N

)
= Ω̂ · {cos(αk), sin(αk), 0, . . . , 0}

2 sin(β2 )
; Ω ∈ SO(d);(29)
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The Future Directions and Remaining Problems

The equivalence between decaying turbulence and solvable
string theory offers a novel perspective in fluid mechanics.

This framework provides tools for analyzing:

Turbulence in d > 3 dimensions (solved)[8].
Magnetohydrodynamic (MHD) turbulence (solved)[4].
Turbulent mixing (passive scalar) (solved)[5].
Turbulence forced by random rotations (solved, in preparation)[1].
Compressible (aerodynamic) turbulence.

Collaboration with mathematicians, experimentalists, and DNS
researchers is crucial for extending and validating this theory.

Open Questions:
What role does external forcing play in modifying the
turbulence-string duality?
Are there other PDEs with similar dimensional reductions? (the above
nonabelian diffusion (20), maybe more).
How can the Euler ensemble be generalized for random walks on loop
groups?
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Encore?

Some afterthoughts, just in case
the audience asks for more...
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Spontaneous Quantization of Classical Turbulence

A thirty-year effort culminated in 2023 in an exact, universal solution to the
Navier-Stokes equations in the turbulent regime [8].

This solution reveals a duality between decaying turbulence and a solvable string theory
with a discrete target space: random walk on regular star polygons.

Turbulent randomness arises from spontaneous quantization, where discrete parameters
emerge from a manifold of solutions of MLE and periodicity requirement.

Universal number-theoretic functions now quantitatively explain DNS data violations of
classical scaling laws, providing a predictive framework for turbulence [7].
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Regular Star Polygons of the Euler Ensemble
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Description

Regular star polygons with various p, q.
These were first classified by Thomas Bradwardine (c. 1300 – 1349), Archbishop
of Canterbury.
The σk variable governs the direction of the random step along the link k ↔ k+1.
The random walk can traverse the polygon multiple times, provided it returns to
its starting point.
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Random Walk on Star Polygon, p = 7, q = 18, N = 100

Visualization
Visualization of a random walk on a star polygon with parameters p = 7, q = 18,
and N = 100.

Alexander Migdal (Institute for Advanced Study, Princeton, USA)Duality of Decaying Turbulence to a Solvable String Theory
IAS Physics Group Seminar, April 16, 2025
28 / 33



The Quantum Ergodic Hypothesis

The complex wave function Ψ of quantum mechanics in loop space
equals the characteristic function of a probability distribution P . This
relation is exact, and it differs from the conventional P = |Ψ|2.
Each distinct state in a quantum system contributes to the partition
function with unit weight, a principle adopted in our quantum
description of the nonlinear NS system.

This uniform measure is an additional conjecture, comparable to
the ergodic hypothesis in Newtonian mechanics. While
well-established in physics, such hypotheses are mathematically
proven only for specific cases.

The heuristic argument for our quantum ergodic hypothesis is the
equivalence of the Euler ensemble to the string theory with discrete
target space.
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Turbulence/String Duality: Insights

Duality phenomena in physics connect strong coupling in one theory
to weak coupling in another, as seen in the AdS/CFT
correspondence.

Duality links statistical averages between two systems without
requiring a direct mapping of their dynamical variables.

In turbulence, the target space of the dual string theory is discrete,
represented by regular star polygons with unit sides and rational
angles, β = 2π p

q .

Fermionic or Ising degrees of freedom (νk = 0, 1; σk = ±1) describe
the random walk along polygon edges.

The radii of these polygons, R = 1
2 sinπ p

q
, follow number-theoretic

distributions involving Euler totients and the Riemann ζ function [7].

This isn’t a conventional string theory with continuous target space
—this string exists in three or higher dimensions.
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Discrete Symmetry and Target Space Integration

Key contrast: Turbulence features chaotic velocity fields
mapping R3 7→ R3, whereas the dual string theory has
discrete variables F⃗ , σ, w and one continuous variable
Ω ∈ SO(3) mapping (Q ⊎ Z2 ⊎ Z ⊎ SO(3)) 7→ R3 .

Integration over the target space (star polygons) reduces to a

discrete sum/integral over Euler ensemble states:

Rational numbers p
q ∈ Q,

Ising variables σk ∈ Z2,
Winding number w = p

q

∑
σk ∈ Z.

The rotation matrix Ω ∈ SO(3).

Visualizing the polygons for fixed N , ordered by angle β, as a

torus in 3D space reveals the world sheet of a discrete string.

Each polygon forms a cross-section of the torus:

Smaller cross-sections correspond to small p, q.
Larger cross-sections arise as q → ∞, with p
or q − p held fixed.

Red/green edge coloring indicates random walk directions σk.

45 Polygons with Even q ≤ 20
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Revealing a Hidden Identity

The WKB solution of this theory amounts to finding a classical
trajectory for a random walk around the circle and a functional
determinant for harmonic fluctuations, averaged over the number
theory distribution of rational numbers.

We are not merely computing turbulence statistics but unveiling
its hidden second identity as a discrete string theory.

This theory challenges traditional views developed over the past
eighty years, but so far it has survived a rigorous scrutiny.

Existing experimental and DNS results show encouraging
agreement with the predictions of the Euler ensemble.
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Closing Thoughts: The Ascent to Understanding

Summit Euler Ensemble

Camp 3 Dim. Reduction

Camp 2 Momentum Loop

Camp 1 Loop Equation.

Base Camp NS Equation

Scaling the summit of turbulence theory is like climbing up the Matterhorn.

Each milestone—loop equations, dimension reduction, and Euler ensemble—brings us
closer to a breathtaking view at the summit.

The wing-suit figure is me: flying or falling? The landing will tell...

Alexander Migdal (Institute for Advanced Study, Princeton, USA)Duality of Decaying Turbulence to a Solvable String Theory
IAS Physics Group Seminar, April 16, 2025
33 / 33


	Evolution of Gibbs Distribution
	Loop Equation and Dimension Reduction
	Turbulence/String Duality
	DNS and Theoretical Match
	Epilogue: The Future Directions and Lingering Questions
	References
	References
	Euler Ensemble = Random Walk on Star Polygons

	anm0: 
	0.99: 
	0.98: 
	0.97: 
	0.96: 
	0.95: 
	0.94: 
	0.93: 
	0.92: 
	0.91: 
	0.90: 
	0.89: 
	0.88: 
	0.87: 
	0.86: 
	0.85: 
	0.84: 
	0.83: 
	0.82: 
	0.81: 
	0.80: 
	0.79: 
	0.78: 
	0.77: 
	0.76: 
	0.75: 
	0.74: 
	0.73: 
	0.72: 
	0.71: 
	0.70: 
	0.69: 
	0.68: 
	0.67: 
	0.66: 
	0.65: 
	0.64: 
	0.63: 
	0.62: 
	0.61: 
	0.60: 
	0.59: 
	0.58: 
	0.57: 
	0.56: 
	0.55: 
	0.54: 
	0.53: 
	0.52: 
	0.51: 
	0.50: 
	0.49: 
	0.48: 
	0.47: 
	0.46: 
	0.45: 
	0.44: 
	0.43: 
	0.42: 
	0.41: 
	0.40: 
	0.39: 
	0.38: 
	0.37: 
	0.36: 
	0.35: 
	0.34: 
	0.33: 
	0.32: 
	0.31: 
	0.30: 
	0.29: 
	0.28: 
	0.27: 
	0.26: 
	0.25: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


